Part Number Hot Search : 
MAU108 TO220 TC553002 TC143Z HM9270D SST213 KP501010 DTA12
Product Description
Full Text Search
 

To Download IRLR2908TRLPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 irlr2908pbf irlu2908pbf hexfet ? power mosfet description this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this hexfet power mosfet are a 175c junction operating temperature, low r jc, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. the d-pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. the straight lead version (irfu series) is for through-hole mounting applications. power dissipation levels up to 1.5 watts are possible in typical surface mount applications. s d g v dss = 80v r ds(on) = 28m ? i d = 30a d-pak irlr2908pbf features advanced process technology ultra low on-resistance dynamic dv/dt rating 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free i-pak irlu2908pbf absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (see fig. 9) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested) sin g le pulse avalanche ener gy tested value  i ar avalanche current a e ar repetitive avalanche ener gy  mj dv/dt peak diode recovery dv/dt  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case ??? 1.3 c/w r ja junction-to-ambient (pcb mount)  ??? 40 r ja junction-to-ambient ??? 110 120 0.77 16 180 250 see fig.12a,12b,15,16 max. 39 28 150 30 300 (1.6mm from case ) -55 to + 175 2.3 pd - 95552b

2 www.irf.com s d g s d g notes    through   are on page 11 hexfet ? is a registered trademark of international rectifier. static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 80 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 0.085 ??? v/c r ds(on) static drain-to-source on-resistance ??? 22.5 28 m ? ??? 25 30 v gs(th) gate threshold voltage 1.0 ??? 2.5 v gfs forward transconductance 35 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 22 33 nc q gs gate-to-source charge ??? 6.0 9.1 q gd gate-to-drain ("miller") charge ??? 11 17 t d(on) turn-on delay time ??? 12 ??? ns t r rise time ???95??? t d(off) turn-off delay time ??? 36 ??? t f fall time ???55??? l d internal drain inductance ??? 4.5 ??? nh between lead, 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 1890 ??? pf c oss output capacitance ??? 260 ??? c rss reverse transfer capacitance ??? 35 ??? c oss output capacitance ??? 1920 ??? c oss output capacitance ??? 170 ??? c oss eff. effective output capacitance ??? 310 ??? diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 39 (body diode) a i sm pulsed source current ??? ??? 150 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 75 110 ns q rr reverse recovery charge ??? 210 310 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 64v v gs = 4.5v ? = 1.0mhz, see fig. 5 v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 4.5v  mosfet symbol v gs = 0v v ds = 25v v gs = 0v, v ds = 64v, ? = 1.0mhz conditions v gs = 0v, v ds = 0v to 64v t j = 25c, i f = 23a, v dd = 25v di/dt = 100a/s  t j = 25c, i s = 23a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = v gs , i d = 250a v ds = 80v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c r g = 8.3 ? i d = 23a v ds = 25v, i d = 23a v dd = 40v i d = 23a v gs = 16v v gs = -16v v gs = 4.5v, i d = 20a  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 23a 

www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c vgs top 15v 10v 4.5v 4.0v 3.5v 3.0v 2.7v bottom 2.5v 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 175c vgs top 15v 10v 4.5v 4.0v 3.5v 3.0v 2.7v bottom 2.5v 0 10 20 30 40 50 60 i d , drain-to-source current (a) 0 10 20 30 40 50 60 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c vds = 10v 20s pulse width 2 3 4 5 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width

4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 5 10 15 20 25 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 64v v ds = 40v v ds = 16v i d = 23a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse

www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 5 10 15 20 25 30 35 40 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 38a v gs = 4.5v 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2

6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 9.3a 16a bottom 23a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a

www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 23a

8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
     + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms

www.irf.com 9  

  

  
      
   international as s embled on ww 16, 2001 in the as sembly line "a" or note: "p" in as s embly line pos ition example: lot code 1234 this is an irfr120 wi t h as s e mb l y indi cates "l ead- f r ee" product (opt ional) p = designates lead-free a = as s e mb l y s i t e code part number we e k 16 dat e code year 1 = 2001 rectifier international logo lot code as s e mb l y 34 12 irfr120 116a line a 34 rectifier logo irfr120 12 as s e mb l y lot code year 1 = 2001 dat e code part number we e k 16 "p" in as s embly line pos ition indicates "l ead- f r ee" qual i fi cati on to the cons umer - l evel p = designates lead-free product qualified to the consumer level (optional) notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/

10 www.irf.com  
   
      
    
  78 line a logo international rectifier or product (opt ional) p = designates lead-free a = as s e mb l y s i t e code irf u120 part number week 19 dat e code ye ar 1 = 2001 rectifier international logo assembly lot code irf u120 56 dat e code part number lot code as s e mb l y 56 78 year 1 = 2001 week 19 119a indicates lead-free" as s embled on ww 19, 2001 in the assembly line "a" note: "p" in as s embly line pos ition example: wi t h as s e mb l y this is an irfu120 lot code 5678 notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/

www.irf.com 11 ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 10/2010 
 repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).  limited by t jmax , starting t j = 25c, l = 0.71mh, r g = 25 ? , i as = 23a, v gs =10v. part not recommended for use above this value.  i sd 23a, di/dt 400a/s, v dd v (br)dss , t j 175c.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.  

   
    
  tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch data and specifications subject to change without notice. this product has been designed and qualifi ed for the industrial market. qualification standards can be found on ir?s web site.


▲Up To Search▲   

 
Price & Availability of IRLR2908TRLPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X